On progressively censored generalized inverted exponential distribution
Sanku Dey and
Tanujit Dey
Journal of Applied Statistics, 2014, vol. 41, issue 12, 2557-2576
Abstract:
A generalized version of inverted exponential distribution (IED) is considered in this paper. This lifetime distribution is capable of modeling various shapes of failure rates, and hence various shapes of aging criteria. The model can be considered as another useful two-parameter generalization of the IED. Maximum likelihood and Bayes estimates for two parameters of the generalized inverted exponential distribution (GIED) are obtained on the basis of a progressively type-II censored sample. We also showed the existence, uniqueness and finiteness of the maximum likelihood estimates of the parameters of GIED based on progressively type-II censored data. Bayesian estimates are obtained using squared error loss function. These Bayesian estimates are evaluated by applying the Lindley's approximation method and via importance sampling technique. The importance sampling technique is used to compute the Bayes estimates and the associated credible intervals. We further consider the Bayes prediction problem based on the observed samples, and provide the appropriate predictive intervals. Monte Carlo simulations are performed to compare the performances of the proposed methods and a data set has been analyzed for illustrative purposes.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.922165 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:12:p:2557-2576
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.922165
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().