Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach
Arash Nademi and
Rahman Farnoosh
Journal of Applied Statistics, 2014, vol. 41, issue 2, 275-293
Abstract:
We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation--maximization algorithm for calculating the estimates numerically.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.839129 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:2:p:275-293
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.839129
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().