EconPapers    
Economics at your fingertips  
 

Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach

Arash Nademi and Rahman Farnoosh

Journal of Applied Statistics, 2014, vol. 41, issue 2, 275-293

Abstract: We propose data generating structures which can be represented as a mixture of autoregressive-autoregressive conditionally heteroscedastic models. The switching between the states is governed by a hidden Markov chain. We investigate semi-parametric estimators for estimating the functions based on the quasi-maximum likelihood approach and provide sufficient conditions for geometric ergodicity of the process. We also present an expectation--maximization algorithm for calculating the estimates numerically.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.839129 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:2:p:275-293

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2013.839129

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:41:y:2014:i:2:p:275-293