Variable selection in the high-dimensional continuous generalized linear model with current status data
Guo-Liang Tian,
Mingqiu Wang and
Lixin Song
Journal of Applied Statistics, 2014, vol. 41, issue 3, 467-483
Abstract:
In survival studies, current status data are frequently encountered when some individuals in a study are not successively observed. This paper considers the problem of simultaneous variable selection and parameter estimation in the high-dimensional continuous generalized linear model with current status data. We apply the penalized likelihood procedure with the smoothly clipped absolute deviation penalty to select significant variables and estimate the corresponding regression coefficients. With a proper choice of tuning parameters, the resulting estimator is shown to be a root n / p n -consistent estimator under some mild conditions. In addition, we show that the resulting estimator has the same asymptotic distribution as the estimator obtained when the true model is known. The finite sample behavior of the proposed estimator is evaluated through simulation studies and a real example.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.840271 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:3:p:467-483
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.840271
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().