Evaluation of incomplete multiple diagnostic tests, with an application in the colon cancer family registry study
Yi Zhang,
Haitao Chu and
Donglin Zeng
Journal of Applied Statistics, 2014, vol. 41, issue 3, 688-700
Abstract:
Accurate diagnosis of a molecularly defined subtype of cancer is often an important step toward its effective control and treatment. For the diagnosis of some subtypes of a cancer, a gold standard with perfect sensitivity and specificity may be unavailable. In those scenarios, tumor subtype status is commonly measured by multiple imperfect diagnostic markers. Additionally, in many such studies, some subjects are only measured by a subset of diagnostic tests and the missing probabilities may depend on the unknown disease status. In this paper, we present statistical methods based on the EM algorithm to evaluate incomplete multiple imperfect diagnostic tests under a missing at random assumption and one missing not at random scenario. We apply the proposed methods to a real data set from the National Cancer Institute (NCI) colon cancer family registry on diagnosing microsatellite instability for hereditary non-polyposis colorectal cancer to estimate diagnostic accuracy parameters (i.e. sensitivities and specificities), prevalence, and potential differential missing probabilities for 11 biomarker tests. Simulations are also conducted to evaluate the small-sample performance of our methods.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.849231 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:3:p:688-700
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.849231
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().