Bayesian generalized varying coefficient models for longitudinal proportional data with errors-in-covariates
Xiao-Feng Wang,
Bo Hu,
Bin Wang and
Kuangnan Fang
Journal of Applied Statistics, 2014, vol. 41, issue 6, 1342-1357
Abstract:
This paper is motivated from a neurophysiological study of muscle fatigue, in which biomedical researchers are interested in understanding the time-dependent relationships of handgrip force and electromyography measures. A varying coefficient model is appealing here to investigate the dynamic pattern in the longitudinal data. The response variable in the study is continuous but bounded on the standard unit interval (0, 1) over time, while the longitudinal covariates are contaminated with measurement errors. We propose a generalization of varying coefficient models for the longitudinal proportional data with errors-in-covariates. We describe two estimation methods with penalized splines, which are formalized under a Bayesian inferential perspective. The first method is an adaptation of the popular regression calibration approach. The second method is based on a joint likelihood under the hierarchical Bayesian model. A simulation study is conducted to evaluate the efficacy of the proposed methods under different scenarios. The analysis of the neurophysiological data is presented to demonstrate the use of the methods.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2013.868870 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:6:p:1342-1357
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2013.868870
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().