Sparse group variable selection based on quantile hierarchical Lasso
Weihua Zhao,
Riquan Zhang and
Jicai Liu
Journal of Applied Statistics, 2014, vol. 41, issue 8, 1658-1677
Abstract:
The group Lasso is a penalized regression method, used in regression problems where the covariates are partitioned into groups to promote sparsity at the group level [27]. Quantile group Lasso, a natural extension of quantile Lasso [25], is a good alternative when the data has group information and has many outliers and/or heavy tails. How to discover important features that are correlated with interest of outcomes and immune to outliers has been paid much attention. In many applications, however, we may also want to keep the flexibility of selecting variables within a group. In this paper, we develop a sparse group variable selection based on quantile methods which select important covariates at both the group level and within the group level, which penalizes the empirical check loss function by the sum of square root group-wise L 1 -norm penalties. The oracle properties are established where the number of parameters diverges. We also apply our new method to varying coefficient model with categorial effect modifiers. Simulations and real data example show that the newly proposed method has robust and superior performance.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2014.888541 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:41:y:2014:i:8:p:1658-1677
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2014.888541
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().