A class of finite mixture of quantile regressions with its applications
Yuzhu Tian,
Manlai Tang and
Maozai Tian
Journal of Applied Statistics, 2016, vol. 43, issue 7, 1240-1252
Abstract:
Mixture of linear regression models provide a popular treatment for modeling nonlinear regression relationship. The traditional estimation of mixture of regression models is based on Gaussian error assumption. It is well known that such assumption is sensitive to outliers and extreme values. To overcome this issue, a new class of finite mixture of quantile regressions (FMQR) is proposed in this article. Compared with the existing Gaussian mixture regression models, the proposed FMQR model can provide a complete specification on the conditional distribution of response variable for each component. From the likelihood point of view, the FMQR model is equivalent to the finite mixture of regression models based on errors following asymmetric Laplace distribution (ALD), which can be regarded as an extension to the traditional mixture of regression models with normal error terms. An EM algorithm is proposed to obtain the parameter estimates of the FMQR model by combining a hierarchical representation of the ALD. Finally, the iterated weighted least square estimation for each mixture component of the FMQR model is derived. Simulation studies are conducted to illustrate the finite sample performance of the estimation procedure. Analysis of an aphid data set is used to illustrate our methodologies.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2015.1094035 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:43:y:2016:i:7:p:1240-1252
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2015.1094035
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().