A new look at the inverse Gaussian distribution with applications to insurance and economic data
Antonio Punzo
Journal of Applied Statistics, 2019, vol. 46, issue 7, 1260-1287
Abstract:
Insurance and economic data are often positive, and we need to take into account this peculiarity in choosing a statistical model for their distribution. An example is the inverse Gaussian (IG), which is one of the most famous and considered distributions with positive support. With the aim of increasing the use of the IG distribution on insurance and economic data, we propose a convenient mode-based parameterization yielding the reparametrized IG (rIG) distribution; it allows/simplifies the use of the IG distribution in various branches of statistics, and we give some examples. In nonparametric statistics, we define a smoother based on rIG kernels. By construction, the estimator is well-defined and does not allocate probability mass to unrealistic negative values. We adopt likelihood cross-validation to select the smoothing parameter. In robust statistics, we propose the contaminated IG distribution, a heavy-tailed generalization of the rIG distribution to accommodate mild outliers. Finally, for model-based clustering and semiparametric density estimation, we present finite mixtures of rIG distributions. We use the EM algorithm to obtain maximum likelihood estimates of the parameters of the mixture and contaminated models. We use insurance data about bodily injury claims, and economic data about incomes of Italian households, to illustrate the models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2018.1542668 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:46:y:2019:i:7:p:1260-1287
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2018.1542668
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().