Robust analogs to the coefficient of variation
Chandima N. P. G. Arachchige,
Luke A. Prendergast and
Robert G. Staudte
Journal of Applied Statistics, 2022, vol. 49, issue 2, 268-290
Abstract:
The coefficient of variation (CV) is commonly used to measure relative dispersion. However, since it is based on the sample mean and standard deviation, outliers can adversely affect it. Additionally, for skewed distributions the mean and standard deviation may be difficult to interpret and, consequently, that may also be the case for the ${\rm CV} $CV. Here we investigate the extent to which quantile-based measures of relative dispersion can provide appropriate summary information as an alternative to the CV. In particular, we investigate two measures, the first being the interquartile range (in lieu of the standard deviation), divided by the median (in lieu of the mean), and the second being the median absolute deviation, divided by the median, as robust estimators of relative dispersion. In addition to comparing the influence functions of the competing estimators and their asymptotic biases and variances, we compare interval estimators using simulation studies to assess coverage.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2020.1808599 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:49:y:2022:i:2:p:268-290
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2020.1808599
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().