Evaluating the Effect of Training on Wages in the Presence of Noncompliance, Nonemployment, and Missing Outcome Data
Paolo Frumento,
Fabrizia Mealli,
Barbara Pacini and
Donald B. Rubin
Journal of the American Statistical Association, 2012, vol. 107, issue 498, 450-466
Abstract:
The effects of a job training program, Job Corps, on both employment and wages are evaluated using data from a randomized study. Principal stratification is used to address, simultaneously, the complications of noncompliance, wages that are only partially defined because of nonemployment, and unintended missing outcomes. The first two complications are of substantive interest, whereas the third is a nuisance. The objective is to find a parsimonious model that can be used to inform public policy. We conduct a likelihood-based analysis using finite mixture models estimated by the expectation-maximization (EM) algorithm. We maintain an exclusion restriction assumption for the effect of assignment on employment and wages for noncompliers, but not on missingness. We provide estimates under the “missing at random” assumption, and assess the robustness of our results to deviations from it. The plausibility of meaningful restrictions is investigated by means of scaled log-likelihood ratio statistics. Substantive conclusions include the following. For compliers, the effect on employment is negative in the short term; it becomes positive in the long term, but these effects are small at best. For always employed compliers, that is, compliers who are employed whether trained or not trained, positive effects on wages are found at all time periods. Our analysis reveals that background characteristics of individuals differ markedly across the principal strata. We found evidence that the program should have been better targeted, in the sense of being designed differently for different groups of people, and specific suggestions are offered. Previous analyses of this dataset, which did not address all complications in a principled manner, led to less nuanced conclusions about Job Corps.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2011.643719 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:498:p:450-466
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2011.643719
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().