EconPapers    
Economics at your fingertips  
 

AdaptSPEC: Adaptive Spectral Estimation for Nonstationary Time Series

Ori Rosen, Sally Wood and David S. Stoffer

Journal of the American Statistical Association, 2012, vol. 107, issue 500, 1575-1589

Abstract: We propose a method for analyzing possibly nonstationary time series by adaptively dividing the time series into an unknown but finite number of segments and estimating the corresponding local spectra by smoothing splines. The model is formulated in a Bayesian framework, and the estimation relies on reversible jump Markov chain Monte Carlo (RJMCMC) methods. For a given segmentation of the time series, the likelihood function is approximated via a product of local Whittle likelihoods. Thus, no parametric assumption is made about the process underlying the time series. The number and lengths of the segments are assumed unknown and may change from one MCMC iteration to another. The frequentist properties of the method are investigated by simulation, and applications to electroencephalogram and the El Niño Southern Oscillation phenomenon are described in detail.

Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.716340 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1575-1589

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2012.716340

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1575-1589