High-Dimensional Sparse Additive Hazards Regression
Wei Lin and
Jinchi Lv
Journal of the American Statistical Association, 2013, vol. 108, issue 501, 247-264
Abstract:
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by modern applications in high-throughput genomic data analysis and credit risk analysis. In this article, we propose a class of regularization methods for simultaneous variable selection and estimation in the additive hazards model, by combining the nonconcave penalized likelihood approach and the pseudoscore method. In a high-dimensional setting where the dimensionality can grow fast, polynomially or nonpolynomially, with the sample size, we establish the weak oracle property and oracle property under mild, interpretable conditions, thus providing strong performance guarantees for the proposed methodology. Moreover, we show that the regularity conditions required by the L 1 method are substantially relaxed by a certain class of sparsity-inducing concave penalties. As a result, concave penalties such as the smoothly clipped absolute deviation, minimax concave penalty, and smooth integration of counting and absolute deviation can significantly improve on the L 1 method and yield sparser models with better prediction performance. We present a coordinate descent algorithm for efficient implementation and rigorously investigate its convergence properties. The practical use and effectiveness of the proposed methods are demonstrated by simulation studies and a real data example.
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2012.746068 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:501:p:247-264
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2012.746068
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().