Selecting the Number of Principal Components in Functional Data
Yehua Li,
Naisyin Wang and
Raymond J. Carroll
Journal of the American Statistical Association, 2013, vol. 108, issue 504, 1284-1294
Abstract:
Functional principal component analysis (FPCA) has become the most widely used dimension reduction tool for functional data analysis. We consider functional data measured at random, subject-specific time points, contaminated with measurement error, allowing for both sparse and dense functional data, and propose novel information criteria to select the number of principal component in such data. We propose a Bayesian information criterion based on marginal modeling that can consistently select the number of principal components for both sparse and dense functional data. For dense functional data, we also develop an Akaike information criterion based on the expected Kullback--Leibler information under a Gaussian assumption. In connecting with the time series literature, we also consider a class of information criteria proposed for factor analysis of multivariate time series and show that they are still consistent for dense functional data, if a prescribed undersmoothing scheme is undertaken in the FPCA algorithm. We perform intensive simulation studies and show that the proposed information criteria vastly outperform existing methods for this type of data. Surprisingly, our empirical evidence shows that our information criteria proposed for dense functional data also perform well for sparse functional data. An empirical example using colon carcinogenesis data is also provided to illustrate the results. Supplementary materials for this article are available online.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.788980 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:108:y:2013:i:504:p:1284-1294
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2013.788980
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().