EconPapers    
Economics at your fingertips  
 

Automated Tsunami Source Modeling Using the Sweeping Window Positive Elastic Net

Daniel M. Percival, Donald B. Percival, Donald W. Denbo, Edison Gica, Paul Y. Huang, Harold O. Mofjeld and Michael C. Spillane

Journal of the American Statistical Association, 2014, vol. 109, issue 506, 491-499

Abstract: In response to hazards posed by earthquake-induced tsunamis, the National Oceanographic and Atmospheric Administration developed a system for issuing timely warnings to coastal communities. This system, in part, involves matching data collected in real time from deep-ocean buoys to a database of precomputed geophysical models, each associated with a geographical location. Currently, trained operators must handpick models from the database using the epicenter of the earthquake as guidance, which can delay issuing of warnings. In this article, we introduce an automatic procedure to select models to improve the timing and accuracy of these warnings. This procedure uses an elastic-net-based penalized and constrained linear least-squares estimator in conjunction with a sweeping window. This window ensures that selected models are close spatially, which is desirable from geophysical considerations. We use the Akaike information criterion to settle on a particular window and to set the tuning parameters associated with the elastic net. Test data from the 2006 Kuril Islands and the devastating 2011 Japan tsunamis show that the automatic procedure yields model fits and verification equal to or better than those from a time-consuming hand-selected solution.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2013.879062 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:109:y:2014:i:506:p:491-499

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2013.879062

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:491-499