LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises
Ke Zhu () and
Shiqing Ling
Journal of the American Statistical Association, 2015, vol. 110, issue 510, 784-794
Abstract:
This article develops a systematic procedure of statistical inference for the auto-regressive moving average (ARMA) model with unspecified and heavy-tailed heteroscedastic noises. We first investigate the least absolute deviation estimator (LADE) and the self-weighted LADE for the model. Both estimators are shown to be strongly consistent and asymptotically normal when the noise has a finite variance and infinite variance, respectively. The rates of convergence of the LADE and the self-weighted LADE are n -super- - 1/2, which is faster than those of least-square estimator (LSE) for the ARMA model when the tail index of generalized auto-regressive conditional heteroskedasticity (GARCH) noises is in (0, 4], and thus they are more efficient in this case. Since their asymptotic covariance matrices cannot be estimated directly from the sample, we develop the random weighting approach for statistical inference under this nonstandard case. We further propose a novel sign-based portmanteau test for model adequacy. Simulation study is carried out to assess the performance of our procedure and one real illustrating example is given. Supplementary materials for this article are available online.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.977386 (text/html)
Access to full text is restricted to subscribers.
Related works:
Working Paper: LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:110:y:2015:i:510:p:784-794
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.977386
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().