Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization
Hyunseung Kang,
Anru Zhang,
T. Tony Cai and
Dylan S. Small
Journal of the American Statistical Association, 2016, vol. 111, issue 513, 132-144
Abstract:
Instrumental variables have been widely used for estimating the causal effect between exposure and outcome. Conventional estimation methods require complete knowledge about all the instruments’ validity; a valid instrument must not have a direct effect on the outcome and not be related to unmeasured confounders. Often, this is impractical as highlighted by Mendelian randomization studies where genetic markers are used as instruments and complete knowledge about instruments’ validity is equivalent to complete knowledge about the involved genes’ functions. In this article, we propose a method for estimation of causal effects when this complete knowledge is absent. It is shown that causal effects are identified and can be estimated as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also introduce conditions for identification when the 50% threshold is violated. A fast penalized ℓ 1 estimation method, called sisVIVE, is introduced for estimating the causal effect without knowing which instruments are valid, with theoretical guarantees on its performance. The proposed method is demonstrated on simulated data and a real Mendelian randomization study concerning the effect of body mass index(BMI) on health-related quality of life (HRQL) index. An R package sisVIVE is available on CRAN. Supplementary materials for this article are available online.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (41)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2014.994705 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:111:y:2016:i:513:p:132-144
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2014.994705
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().