A Framework for Synthetic Control Methods With High-Dimensional, Micro-Level Data: Evaluating a Neighborhood-Specific Crime Intervention
Michael W. Robbins,
Jessica Saunders and
Beau Kilmer
Journal of the American Statistical Association, 2017, vol. 112, issue 517, 109-126
Abstract:
The synthetic control method is an increasingly popular tool for analysis of program efficacy. Here, it is applied to a neighborhood-specific crime intervention in Roanoke, VA, and several novel contributions are made to the synthetic control toolkit. We examine high-dimensional data at a granular level (the treated area has several cases, a large number of untreated comparison cases, and multiple outcome measures). Calibration is used to develop weights that exactly match the synthetic control to the treated region across several outcomes and time periods. Further, we illustrate the importance of adjusting the estimated effect of treatment for the design effect implicit within the weights. A permutation procedure is proposed wherein countless placebo areas can be constructed, enabling estimation of p-values under a robust set of assumptions. An omnibus statistic is introduced that is used to jointly test for the presence of an intervention effect across multiple outcomes and post-intervention time periods. Analyses indicate that the Roanoke crime intervention did decrease crime levels, but the estimated effect of the intervention is not as statistically significant as it would have been had less rigorous approaches been used. Supplementary materials for this article are available online.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1213634 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:517:p:109-126
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1213634
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().