EconPapers    
Economics at your fingertips  
 

Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks

Ephraim M. Hanks

Journal of the American Statistical Association, 2017, vol. 112, issue 518, 497-507

Abstract: We present an approach for modeling areal spatial covariance in observed genetic allele data by considering the stationary (limiting) distribution of a spatio-temporal Markov random walk model for gene flow. This stationary distribution corresponds to an intrinsic simultaneous autoregressive (SAR) model for spatial correlation, and provides a principled approach to specifying areal spatial models when a spatio-temporal generating process can be assumed. We apply the approach to a study of spatial genetic variation of trout in a stream network in Connecticut, USA.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1224714 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:112:y:2017:i:518:p:497-507

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2016.1224714

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:497-507