Balancing Covariates via Propensity Score Weighting
Fan Li,
Kari Lock Morgan and
Alan M. Zaslavsky
Journal of the American Statistical Association, 2018, vol. 113, issue 521, 390-400
Abstract:
Covariate balance is crucial for unconfounded descriptive or causal comparisons. However, lack of balance is common in observational studies. This article considers weighting strategies for balancing covariates. We define a general class of weights—the balancing weights—that balance the weighted distributions of the covariates between treatment groups. These weights incorporate the propensity score to weight each group to an analyst-selected target population. This class unifies existing weighting methods, including commonly used weights such as inverse-probability weights as special cases. General large-sample results on nonparametric estimation based on these weights are derived. We further propose a new weighting scheme, the overlap weights, in which each unit’s weight is proportional to the probability of that unit being assigned to the opposite group. The overlap weights are bounded, and minimize the asymptotic variance of the weighted average treatment effect among the class of balancing weights. The overlap weights also possess a desirable small-sample exact balance property, based on which we propose a new method that achieves exact balance for means of any selected set of covariates. Two applications illustrate these methods and compare them with other approaches.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (75)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2016.1260466 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:113:y:2018:i:521:p:390-400
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2016.1260466
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().