A Penalized Synthetic Control Estimator for Disaggregated Data
Alberto Abadie and
Jérémy L’Hour
Journal of the American Statistical Association, 2021, vol. 116, issue 536, 1817-1834
Abstract:
Synthetic control methods are commonly applied in empirical research to estimate the effects of treatments or interventions on aggregate outcomes. A synthetic control estimator compares the outcome of a treated unit to the outcome of a weighted average of untreated units that best resembles the characteristics of the treated unit before the intervention. When disaggregated data are available, constructing separate synthetic controls for each treated unit may help avoid interpolation biases. However, the problem of finding a synthetic control that best reproduces the characteristics of a treated unit may not have a unique solution. Multiplicity of solutions is a particularly daunting challenge when the data include many treated and untreated units. To address this challenge, we propose a synthetic control estimator that penalizes the pairwise discrepancies between the characteristics of the treated units and the characteristics of the units that contribute to their synthetic controls. The penalization parameter trades off pairwise matching discrepancies with respect to the characteristics of each unit in the synthetic control against matching discrepancies with respect to the characteristics of the synthetic control unit as a whole. We study the properties of this estimator and propose data-driven choices of the penalization parameter.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (87)
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2021.1971535 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:116:y:2021:i:536:p:1817-1834
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2021.1971535
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().