Varying Naïve Bayes Models With Applications to Classification of Chinese Text Documents
Guoyu Guan,
Jianhua Guo and
Hansheng Wang
Journal of Business & Economic Statistics, 2014, vol. 32, issue 3, 445-456
Abstract:
Document classification is an area of great importance for which many classification methods have been developed. However, most of these methods cannot generate time-dependent classification rules. Thus, they are not the best choices for problems with time-varying structures. To address this problem, we propose a varying naïve Bayes model, which is a natural extension of the naïve Bayes model that allows for time-dependent classification rule. The method of kernel smoothing is developed for parameter estimation and a BIC-type criterion is invented for feature selection. Asymptotic theory is developed and numerical studies are conducted. Finally, the proposed method is demonstrated on a real dataset, which was generated by the Mayor Public Hotline of Changchun, the capital city of Jilin Province in Northeast China.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2014.903086 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:32:y:2014:i:3:p:445-456
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2014.903086
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().