Identification of Time-Varying Factor Models
Ying Lun Cheung
Journal of Business & Economic Statistics, 2024, vol. 42, issue 1, 76-94
Abstract:
The emergence of large datasets with long time spans has cast doubt on the assumption of constant loadings in conventional factor models. Being a potential solution, the time-varying factor model (TVFM) has attracted enormous interest in the literature. However, TVFM also suffers from the well-known problem of nonidentifiability. This article considers the situations under which both the factors and factor loadings can be estimated without rotations asymptotically. Asymptotic distributions of the proposed estimators are derived. Theoretical findings are supported by simulations. Finally, we evaluate the forecasting performance of the estimated factors subject to different identification restrictions using an extensive dataset of the U.S. macroeconomic variables. Substantial differences are found among the choices of identification restrictions.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2022.2151449 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:42:y:2024:i:1:p:76-94
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2022.2151449
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().