A bivariate first-order signed integer-valued autoregressive process
Jan Bulla,
Christophe Chesneau and
Maher Kachour
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 13, 6590-6604
Abstract:
Bivariate integer-valued time series occur in many areas, such as finance, epidemiology, business etc. In this article, we present bivariate autoregressive integer-valued time-series models, based on the signed thinning operator. Compared to classical bivariate INAR models, the new processes have the advantage to allow for negative values for both the time series and the autocorrelation functions. Strict stationarity and ergodicity of the processes are established. The moments and the autocovariance functions are determined. The conditional least squares estimator of the model parameters is considered and the asymptotic properties of the obtained estimators are derived. An analysis of a real dataset from finance and a simulation study are carried out to assess the performance of the model.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1132322 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:13:p:6590-6604
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1132322
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().