The bivariate alpha-skew-normal distribution
Francisco Louzada,
Anderson Ara and
Guilherme Fernandes
Communications in Statistics - Theory and Methods, 2017, vol. 46, issue 14, 7147-7156
Abstract:
In this paper, we propose a new bivariate distribution, namely bivariate alpha-skew-normal distribution. The proposed distribution is very flexible and capable of generalizing the univariate alpha-skew-normal distribution as its marginal component distributions; it features a probability density function with up to two modes and has the bivariate normal distribution as a special case. The joint moment generating function as well as the main moments are provided. Inference is based on a usual maximum-likelihood estimation approach. The asymptotic properties of the maximum-likelihood estimates are verified in light of a simulation study. The usefulness of the new model is illustrated in a real benchmark data.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2015.1024865 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:46:y:2017:i:14:p:7147-7156
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2015.1024865
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().