EconPapers    
Economics at your fingertips  
 

Approximate Bayesian analysis of doubly censored samples from mixture of two Weibull distributions

Navid Feroze and Muhammad Aslam

Communications in Statistics - Theory and Methods, 2019, vol. 48, issue 11, 2862-2878

Abstract: The purpose of the paper is to estimate the parameters of the two-component mixture of Weibull distribution under doubly censored samples using Bayesian approach. The choice of Weibull distribution is made due to its (i) capability to model failure time data from engineering, medical and biological sciences (ii) added advantages over the well-known lifetime distributions such as exponential, Raleigh, lognormal and gamma distribution in terms of flexibility, increasing and decreasing hazard rate and closed-form distribution function and hazard rate. The proposed two-component mixture of Weibull distribution is even more flexible than its conventional form. However, the estimation of the parameters from the proposed mixture is more complex. Further, we have assumed couple of loss functions under non informative prior for the Bayesian analysis of the parameters from the mixture model. As the resultant Bayes estimators and associated posterior risks cannot be derived in the closed form, we have used the importance sampling and Lindley’s approximation to obtain the approximate estimates for the parameters of the mixture model. The comparison between the performances of approximation techniques has been made on the basis of simulation study and real-life data analysis. The importance sampling is found to be better than Lindley’s approximation as it gives better estimation for shape and mixing parameters of the mixture model and computations under this technique are much easier/shorter than those under Lindley’s approximation.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2018.1473430 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:48:y:2019:i:11:p:2862-2878

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2018.1473430

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:48:y:2019:i:11:p:2862-2878