Model averaging by jackknife criterion for varying-coefficient partially linear models
Guozhi Hu,
Weihu Cheng and
Jie Zeng
Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 11, 2671-2689
Abstract:
This paper is concerned with model averaging procedure for varying-coefficient partially linear models. We proposed a jackknife model averaging method that involves minimizing a leave-one-out cross-validation criterion, and developed a computational shortcut to optimize the cross-validation criterion for weight choice. The resulting model average estimator is shown to be asymptotically optimal in terms of achieving the smallest possible squared error. The simulation studies have provided evidence of the superiority of the proposed procedures. Our approach is further applied to a real data.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1580736 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:11:p:2671-2689
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2019.1580736
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().