EconPapers    
Economics at your fingertips  
 

Optimal investment strategy for a DC pension plan with mispricing under the Heston model

Jie Ma, Hui Zhao and Ximin Rong

Communications in Statistics - Theory and Methods, 2020, vol. 49, issue 13, 3168-3183

Abstract: In this article, we consider the optimal investment problem for a defined contribution (DC) pension plan with mispricing. We assume that the pension funds are allowed to invest in a risk-free asset, a market index, and a risky asset with mispricing, i.e. the prices are inconsistent in different financial markets. Assuming that the price process of the risky asset follows the Heston model, the manager of the pension fund aims to maximize the expected utility for the power utility function of terminal wealth. By applying stochastic control theory, we establish the corresponding Hamilton-Jacobi-Bellman (HJB) equation. And the optimal investment strategy is obtained for the power utility function explicitly. Finally, numerical examples are provided to analyze effects of parameters on the optimal strategy.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2019.1586938 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:49:y:2020:i:13:p:3168-3183

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20

DOI: 10.1080/03610926.2019.1586938

Access Statistics for this article

Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe

More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:lstaxx:v:49:y:2020:i:13:p:3168-3183