Confidence distributions and empirical Bayes posterior distributions unified as distributions of evidential support
David R. Bickel
Communications in Statistics - Theory and Methods, 2022, vol. 51, issue 10, 3142-3163
Abstract:
While empirical Bayes methods thrive in the presence of the thousands of simultaneous hypothesis tests in genomics and other large-scale applications, significance tests and confidence intervals are considered more appropriate for small numbers of tested hypotheses. Indeed, for fewer hypotheses, there is more uncertainty in empirical Bayes estimates of the prior distribution. Confidence intervals have been used to propagate the uncertainty in the prior to empirical Bayes inference about a parameter, but only by combining a Bayesian posterior distribution with a confidence distribution. Combining distributions of both types has also been used to combine empirical Bayes methods and confidence intervals for estimating a parameter of interest.To clarify the foundational status of such combinations, the concept of an evidential model is proposed. In the framework of evidential models, both Bayesian posterior distributions and confidence distributions are special cases of evidential support distributions. Evidential support distributions, by quantifying the sufficiency of the data as evidence, leverage the strengths of Bayesian posterior distributions and confidence distributions for cases in which each type performs well and for cases benefiting from the combination of both. Evidential support distributions also address problems of bioequivalence, bounded parameters, and the lack of a unique confidence distribution.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/03610926.2020.1790004 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:lstaxx:v:51:y:2022:i:10:p:3142-3163
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/lsta20
DOI: 10.1080/03610926.2020.1790004
Access Statistics for this article
Communications in Statistics - Theory and Methods is currently edited by Debbie Iscoe
More articles in Communications in Statistics - Theory and Methods from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().