Viability of Small Populations Experiencing Recurring Catastrophes
Peter Jagers and
Karin Harding
Mathematical Population Studies, 2009, vol. 16, issue 3, 177-198
Abstract:
Some small populations are characterized by periods of exponential growth interrupted by sudden drops. These drops can be linked to the population size itself, for example, through overexploitation of local resources. The long-term population extinction risk and the time to extinction for such a repeatedly collapsing population are estimated from general branching processes. The latter allows realistic modeling of lifespan distributions and reproduction patterns, litter (or brood or clutch) sizes as long as individuals reproduce freely and density effects are absent. As the population grows, the carrying capacity of the habitat increasingly matters. This is modeled as a drop after reaching a ceiling. The probability of recovery is then determined by the population size after the drop and by the risk of extinction of branching processes. The reproductive behavior of individuals during the periods free of density effects determines the intrinsic rate of increase of populations close to the carrying capacity. The details of life history which produce demographic stochasticity remain important in systems with density effects. Finally, the time to extinction of a single system with a high carrying capacity is compared to that of a population distributed over several small patches. For systems not allowing migration, survival is favored by a single large habitat rather than by several small habitats.
Keywords: branching processes; carrying capacity; density dependent catastrophes; survival time (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/08898480903034694 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:mpopst:v:16:y:2009:i:3:p:177-198
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GMPS20
DOI: 10.1080/08898480903034694
Access Statistics for this article
Mathematical Population Studies is currently edited by Prof. Noel Bonneuil, Annick Lesne, Tomasz Zadlo, Malay Ghosh and Ezio Venturino
More articles in Mathematical Population Studies from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().