Modelling and simulation of heat exchange and moisture content in a cereal storage silo
F. Hammami,
S. Ben Mabrouk and
A. Mami
Mathematical and Computer Modelling of Dynamical Systems, 2016, vol. 22, issue 3, 207-220
Abstract:
In this paper, a mathematical model is developed based on the heat transfer of stored grains aerated in a cylindrical silo. This work is a part of study that aims to model the whole process of cereal storage system including a dehumidifier. The use of dehumidifier is intended to remove excess moisture from the airflow injected by the ventilator system in the silo filled with wheat, and to keep hygroscopic properties of grain in safe level during the storage period. Temperature and humidity are the two important variables coupled to control the process and to preserve grain quality. The laboratory device permitted us to achieve several tests for different conditions of grain stored in silo without aeration. A simulation of the airflow through the thermal space of the silo and grain parameters has been carried out. The results are reasonably in agreement with experiments and other published data. The system performance is evaluated at critical conditions of storage boundaries.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2016.1157823 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:22:y:2016:i:3:p:207-220
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20
DOI: 10.1080/13873954.2016.1157823
Access Statistics for this article
Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch
More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().