EconPapers    
Economics at your fingertips  
 

A cellular automata model of chemotherapy effects on tumour growth: targeting cancer and immune cells

Fateme Pourhasanzade and S. H. Sabzpoushan

Mathematical and Computer Modelling of Dynamical Systems, 2019, vol. 25, issue 1, 63-89

Abstract: The effects of therapy on avascular cancer development based on a stochastic cellular automata model are considered. Making the model more compatible with the biology of cancer, the following features are implemented: intrinsic resistance of cancerous cells along with drug-induced resistance, drug-sensitive cells, immune system. Results are reported for no treatment, discontinued treatment after only one cycle of chemotherapy, and periodic drug administration therapy modes. Growth fraction, necrotic fraction, and tumour volume are used as output parameters beside a 2-D graphical growth presentation. Periodic drug administration is more effective to inhibit the growth of tumours. The model has been validated by the verification of the simulation results using in vivo literature data. Considering immune cells makes the model more compatible with the biological realities. Beside targeting cancer cells, the model can also simulate the activation of the immune system to fight against cancer.Abbreviations CA: cellular automata; DSC: drug sensitive cell; DRC: drug resistant cell; GF: growth fraction; NF: necrotic fraction; ODE: ordinary differential equation; PDE: partial differential equation; SCAM: The proposed stochastic cellular automata model

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/13873954.2019.1571515 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:nmcmxx:v:25:y:2019:i:1:p:63-89

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/NMCM20

DOI: 10.1080/13873954.2019.1571515

Access Statistics for this article

Mathematical and Computer Modelling of Dynamical Systems is currently edited by I. Troch

More articles in Mathematical and Computer Modelling of Dynamical Systems from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:nmcmxx:v:25:y:2019:i:1:p:63-89