A class of Levy process models with almost exact calibration to both barrier and vanilla FX options
Peter Carr and
John Crosby
Quantitative Finance, 2010, vol. 10, issue 10, 1115-1136
Abstract:
Vanilla (standard European) options are actively traded on many underlying asset classes, such as equities, commodities and foreign exchange (FX). The market quotes for these options are typically used by exotic options traders to calibrate the parameters of the (risk-neutral) stochastic process for the underlying asset. Barrier options, of many different types, are also widely traded in all these markets but one important feature of the FX options markets is that barrier options, especially double-no-touch (DNT) options, are now so actively traded that they are no longer considered, in any way, exotic options. Instead, traders would, in principle, like to use them as instruments to which they can calibrate their model. The desirability of doing this has been highlighted by talks at practitioner conferences but, to our best knowledge (at least within the realm of the published literature), there have been no models which are specifically designed to cater for this. In this paper, we introduce such a model. It allows for calibration in a two-stage process. The first stage fits to DNT options (or other types of double barrier options). The second stage fits to vanilla options. The key to this is to assume that the dynamics of the spot FX rate are of one type before the first exit time from a 'corridor' region but are allowed to be of a different type after the first exit time. The model allows for jumps (either finite activity or infinite activity) and also for stochastic volatility. Hence, not only can it give a good fit to the market prices of options, it can also allow for realistic dynamics of the underlying FX rate and realistic future volatility smiles and skews. En route, we significantly extend existing results in the literature by providing closed-form (up to Laplace inversion) expressions for the prices of several types of barrier options as well as results related to the distribution of first passage times and of the 'overshoot'.
Keywords: Levy processes; Option pricing; Barrier options; Continuous time finance; Credit models; Currency derivatives; Pricing of derivatives securities; Quantitative finance (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680903413605 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:10:y:2010:i:10:p:1115-1136
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20
DOI: 10.1080/14697680903413605
Access Statistics for this article
Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral
More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().