EconPapers    
Economics at your fingertips  
 

Robust estimation of historical volatility and correlations in risk management

Alexander Tchernitser and Dmitri Rubisov

Quantitative Finance, 2009, vol. 9, issue 1, 43-54

Abstract: Financial time series have two features which, in many cases, prevent the use of conventional estimators of volatilities and correlations: leptokurtotic distributions and contamination of data with outliers. Other techniques are required to achieve stable and accurate results. In this paper, we review robust estimators for volatilities and correlations and identify those best suited for use in risk management. The selection criteria were that the estimator should be stable to both fractionally small departures for all data points (fat tails), and to fractionally large departures for a small number of data points (outliers). Since risk management typically deals with thousands of time series at once, another major requirement was the independence of the approach of any manual correction or data pre-processing. We recommend using volatility t-estimators, for which we derived the estimation error formula for the case when the exact shape of the data distribution is unknown. A convenient robust estimator for correlations is Kendall's tau, whose drawback is that it does not guarantee the positivity of the correlation matrix. We chose to use geometric optimization that overcomes this problem by finding the closest correlation matrix to a given matrix in terms of the Hadamard norm. We propose the weights for the norm and demonstrate the efficiency of the algorithm on large-scale problems.

Keywords: Corporate risk management; Statistical methods; Model calibration; Monte Carlo methods; Pricing models (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/14697680802238467 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:quantf:v:9:y:2009:i:1:p:43-54

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RQUF20

DOI: 10.1080/14697680802238467

Access Statistics for this article

Quantitative Finance is currently edited by Michael Dempster and Jim Gatheral

More articles in Quantitative Finance from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:quantf:v:9:y:2009:i:1:p:43-54