The digital layer: alternative data for regional and innovation studies
Milad Abbasiharofteh,
Miriam Krüger,
Jan Kinne,
David Lenz and
Bernd Resch
Spatial Economic Analysis, 2023, vol. 18, issue 4, 507-529
Abstract:
The lack of large-scale data revealing the interactions among firms has constrained empirical studies. Utilizing relational web data has remained unexplored as a remedy for this data problem. We constructed a Digital Layer by scraping the inter-firm hyperlinks of 600,000 German firms and linked the Digital Layer with several traditional indicators. We showcase the use of this developed dataset by testing whether the Digital Layer data can replicate several theoretically motivated and empirically supported stylized facts. The results show that the intensity and quality of firms’ hyperlinks are strongly associated with the innovation capabilities of firms and, to a lesser extent, with hyperlink relations to geographically distant and cognitively close firms. Finally, we discuss the implications of the Digital Layer approach for an evidence-based assessment of sectoral and place-based innovation policies.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/17421772.2023.2193222 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:specan:v:18:y:2023:i:4:p:507-529
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RSEA20
DOI: 10.1080/17421772.2023.2193222
Access Statistics for this article
Spatial Economic Analysis is currently edited by Bernie Fingleton and Danilo Igliori
More articles in Spatial Economic Analysis from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().