Parallel computing in railway research
Qing Wu,
Maksym Spiryagin,
Colin Cole and
Tim McSweeney
International Journal of Rail Transportation, 2020, vol. 8, issue 2, 111-134
Abstract:
Available computing power for researchers has been increasing exponentially over the last decade. Parallel computing is possibly the best way to harness computing power provided by multiple computing units. This paper reviews parallel computing applications in railway research as well as the enabling techniques used for the purpose. Nine enabling techniques were reviewed and Message Passing Interface, Domain Decomposition and Hadoop & Apache are the top three most widely used enabling techniques. Seven major application topics were reviewed and iterative optimisations, continuous dynamics and data & signal analysis are the most widely reported applications. The reasons why these applications are suitable for parallel computing were discussed as well as the suitability of various enabling techniques for different applications. Computing time speed-ups that were reported from these applications were summarised. The challenges for applying parallel computing for railway research are discussed.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/23248378.2018.1553115 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjrtxx:v:8:y:2020:i:2:p:111-134
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjrt20
DOI: 10.1080/23248378.2018.1553115
Access Statistics for this article
International Journal of Rail Transportation is currently edited by Wanming Zhai and Kelvin C. P. Wang
More articles in International Journal of Rail Transportation from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().