Investigating Bayesian Optimization for rail network optimization
Bob Hickish,
David I. Fletcher and
Robert F. Harrison
International Journal of Rail Transportation, 2020, vol. 8, issue 4, 307-323
Abstract:
Optimizing the operation of rail networks using simulations is an on-going task where heuristic methods such as Genetic Algorithms have been applied. However, these simulations are often expensive to compute and consequently, because the optimization methods require many (typically >104) repeat simulations, the computational cost of optimization is dominated by them. This paper examines Bayesian Optimization and benchmarks it against the Genetic Algorithm method. By applying both methods to test-tasks seeking to maximize passenger satisfaction by optimum resource allocation, it is experimentally determined that a Bayesian Optimization implementation finds ‘good’ solutions in an order of magnitude fewer simulations than a Genetic Algorithm. Similar improvement for real-world problems will allow the predictive power of detailed simulation models to be used for a wider range of network optimization tasks. To the best of the authors’ knowledge, this paper documents the first application of Bayesian Optimization within the field of rail network optimization.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/23248378.2019.1669500 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tjrtxx:v:8:y:2020:i:4:p:307-323
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tjrt20
DOI: 10.1080/23248378.2019.1669500
Access Statistics for this article
International Journal of Rail Transportation is currently edited by Wanming Zhai and Kelvin C. P. Wang
More articles in International Journal of Rail Transportation from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().