A statistical analysis of consumer perceptions towards automated vehicles and their intended adoption
Nikhil Menon,
Yu Zhang,
Abdul Rawoof Pinjari and
Fred Mannering
Transportation Planning and Technology, 2020, vol. 43, issue 3, 253-278
Abstract:
While automated vehicle (AV) development continues to progress rapidly, how the public will accept and adopt automated vehicles remains an open question. Using extensive survey data, we apply cluster analysis to better understand consumer perceptions toward potential benefits and concerns related to AVs with regard to factors influencing their AV adoption likelihood. Four market segments are identified – ‘benefits-dominated,’ ‘concerns-dominated,’ ‘uncertain,’ and ‘well-informed.’ A random parameters multinomial logit model is then estimated to identify factors influencing the probability of respondents belonging to one of these four market segments. Among other influences (such as socio-economic and current travel characteristics), it is found that ‘Millennials’ have a higher probability of belonging to the well-informed market segment, ‘Gen-Xers’ with a lower probability to the uncertain market segment, and ‘Baby Boomers’ with a higher probability to the concerns-dominated market (relative to the ‘Great Generation’). We also study the individuals’ expressed likelihood of AV adoption using separate random parameters ordered probit estimations for each of the four market segments. The substantial and statistically significant differences across each AV consumer market segment underscore the potentially large impact that different consumer demographics may have on AV adoption and the need for targeted marketing to achieve better market-penetration outcomes.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2020.1735740 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:43:y:2020:i:3:p:253-278
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2020.1735740
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().