EconPapers    
Economics at your fingertips  
 

Factor analysis of correlation matrices when the number of random variables exceeds the sample size

Miguel Marino and Yi Li

Statistical Theory and Related Fields, 2017, vol. 1, issue 2, 246-256

Abstract: Factor analysis which studies correlation matrices is an effective means of data reduction whose inference on the correlation matrix typically requires the number of random variables, p, to be relatively small and the sample size, n, to be approaching infinity. In contemporary data collection for biomedical studies, disease surveillance and genetics, p > n limits the use of existing factor analysis methods to study the correlation matrix. The motivation for the research here comes from studying the correlation matrix of log annual cancer mortality rate change for p = 59 cancer types from 1969 to 2008 (n = 39) in the U.S.A. We formalise a test statistic to perform inference on the structure of the correlation matrix when p > n. We develop an approach based on group sequential theory to estimate the number of relevant factors to be extracted. To facilitate interpretation of the extracted factors, we propose a BIC (Bayesian Information Criterion)-type criterion to produce a sparse factor loading representation. The proposed methodology outperforms competing ad hoc methodologies in simulation analyses, and identifies three significant underlying factors responsible for the observed correlation between cancer mortality rate changes.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24754269.2017.1399740 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tstfxx:v:1:y:2017:i:2:p:246-256

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tstf20

DOI: 10.1080/24754269.2017.1399740

Access Statistics for this article

Statistical Theory and Related Fields is currently edited by Zhao Wei

More articles in Statistical Theory and Related Fields from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tstfxx:v:1:y:2017:i:2:p:246-256