EconPapers    
Economics at your fingertips  
 

Testing hypotheses under covariate-adaptive randomisation and additive models

Ting Ye

Statistical Theory and Related Fields, 2018, vol. 2, issue 1, 96-101

Abstract: Covariate-adaptive randomisation has a long history of applications in clinical trials. Shao, Yu, and Zhong [(2010). A theory for testing hypotheses under covariate-adaptive randomization. Biometrika, 97, 347–360] and Shao and Yu [(2013). Validity of tests under covariate-adaptive biased coin randomization and generalized linear models. Biometrics, 69, 960–969] showed that the simple t-test is conservative under covariate-adaptive biased coin (CABC) randomisation in terms of type I error, and proposed a valid test using the bootstrap. Under a general additive model with CABC randomisation, we construct a calibrated t-test that shares the same property as the bootstrap method in Shao et al. (2010), but do not need large computation required by the bootstrap method. Some simulation results are presented to show the finite sample performance of the calibrated t-test.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/24754269.2018.1477005 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tstfxx:v:2:y:2018:i:1:p:96-101

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tstf20

DOI: 10.1080/24754269.2018.1477005

Access Statistics for this article

Statistical Theory and Related Fields is currently edited by Zhao Wei

More articles in Statistical Theory and Related Fields from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tstfxx:v:2:y:2018:i:1:p:96-101