EconPapers    
Economics at your fingertips  
 

Pseudo likelihood and dimension reduction for data with nonignorable nonresponse

Ji Chen, Bingying Xie and Jun Shao

Statistical Theory and Related Fields, 2018, vol. 2, issue 2, 196-205

Abstract: Tang et al. (2003. Analysis of multivariate missing data with nonignorable nonresponse. Biometrika, 90(4), 747–764) and Zhao & Shao (2015. Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association, 110(512), 1577–1590) proposed a pseudo likelihood approach to estimate unknown parameters in a parametric density of a response Y conditioned on a vector of covariate X, where Y is subjected to nonignorable nonersponse, X is always observed, and the propensity of whether or not Y is observed conditioned on Y and X is completely unspecified. To identify parameters, Zhao & Shao (2015. Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data. Journal of the American Statistical Association, 110(512), 1577–1590) assumed that X can be decomposed into U and Z, where Z can be excluded from the propensity but is related with Y even conditioned on U. The pseudo likelihood involves the estimation of the joint density of U and Z. When this density is estimated nonparametrically, in this paper we apply sufficient dimension reduction to reduce the dimension of U for efficient estimation. Consistency and asymptotic normality of the proposed estimators are established. Simulation results are presented to study the finite sample performance of the proposed estimators.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/24754269.2018.1516101 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tstfxx:v:2:y:2018:i:2:p:196-205

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tstf20

DOI: 10.1080/24754269.2018.1516101

Access Statistics for this article

Statistical Theory and Related Fields is currently edited by Zhao Wei

More articles in Statistical Theory and Related Fields from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tstfxx:v:2:y:2018:i:2:p:196-205