Multivariate small area estimation under nonignorable nonresponse
Danny Pfeffermann and
Michael Sverchkov
Statistical Theory and Related Fields, 2019, vol. 3, issue 2, 213-223
Abstract:
We consider multivariate small area estimation under nonignorable, not missing at random (NMAR) nonresponse. We assume a response model that accounts for the different patterns of the observed outcomes, (which values are observed and which ones are missing), and estimate the response probabilities by application of the Missing Information Principle (MIP). By this principle, we first derive the likelihood score equations for the case where the missing outcomes are actually observed, and then integrate out the unobserved outcomes from the score equations with respect to the distribution holding for the missing data. The latter distribution is defined by the distribution fitted to the observed data for the respondents and the response model. The integrated score equations are then solved with respect to the unknown parameters indexing the response model. Once the response probabilities have been estimated, we impute the missing outcomes from their appropriate distribution, yielding a complete data set with no missing values, which is used for predicting the target area means. A parametric bootstrap procedure is developed for assessing the mean squared errors (MSE) of the resulting predictors. We illustrate the approach by a small simulation study.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/24754269.2019.1676683 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tstfxx:v:3:y:2019:i:2:p:213-223
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tstf20
DOI: 10.1080/24754269.2019.1676683
Access Statistics for this article
Statistical Theory and Related Fields is currently edited by Zhao Wei
More articles in Statistical Theory and Related Fields from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().