Adaptive backstepping controller design for nonlinear uncertain systems using fuzzy neural systems
Ching-Hung Lee and
Bo-Ren Chung
International Journal of Systems Science, 2012, vol. 43, issue 10, 1855-1869
Abstract:
In this article, we propose an adaptive backstepping control scheme using fuzzy neural networks (FNNs), ABCFNN, for a class of nonlinear non-affine systems in non-triangular form. The nonlinear non-affine system contains the uncertainty, external disturbance or parameters variations. Two kinds of FNN systems are used to estimate the unknown system functions. According to the FNN estimations, the adaptive backstepping control (ABCFNN) signal can be generated by backstepping design procedure such that the system output follows the desired trajectory. To ensure robustness and performance, a proportional-integral-surface function and robust controller are designed to improve the control performance. Based on the Lyapunov stability theory, the stability of a closed-loop system is guaranteed and the adaptive laws of the FNN parameters are obtained. This approach is also valid for nonlinear affine system with uncertainty or disturbance. The uncertainty and disturbance terms are estimated by FNNs and treated by the ABCFNN scheme. Finally, the effectiveness of the proposed ABCFNN is demonstrated through the simulation of controlling a nonlinear non-affine system and the continuously stirred tank reactor plant to demonstrate the performances of our approach.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2011.554915 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:43:y:2012:i:10:p:1855-1869
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2011.554915
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().