Finite-time control for a class of discrete-time Markovian jump systems with partly unknown time-varying transition probabilities subject to average dwell time switching
Jun Cheng,
Hong Zhu,
Shouming Zhong,
Yuping Zhang and
Yuanyuan Li
International Journal of Systems Science, 2015, vol. 46, issue 6, 1080-1093
Abstract:
An extension of a fixed transition probability (TP) Markovian switching model to combine time-varying TPs has offered another set of useful regime-switching models. This paper is concerned with the problem of finite-time H∞ control for a class of discrete-time Markovian jump systems with partly unknown time-varying TPs subject to average dwell time switching. The so-called time-varying TPs mean that the TPs are varying but invariant within an interval. The variation of the TPs considered here is subject to a class of slow switching signal. Based on selecting the appropriate Lyapunov–Krasovskii functional, sufficient conditions of finite-time boundedness of Markovian jump systems are derived and the system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.808716 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:6:p:1080-1093
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.808716
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().