EconPapers    
Economics at your fingertips  
 

Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary

Akshay Kangale, S. Krishna Kumar, Mohd Arshad Naeem, Mark Williams and M. K. Tiwari

International Journal of Systems Science, 2016, vol. 47, issue 13, 3272-3286

Abstract: With the massive growth of the internet, product reviews increasingly serve as an important source of information for customers to make choices online. Customers depend on these reviews to understand users’ experience, and manufacturers rely on this user-generated content to capture user sentiments about their product. Therefore, it is in the best interest of both customers and manufacturers to have a portal where they can read a complete comprehensive summary of these reviews in minimum time. With this in mind, we arrived at our first objective which is to generate a feature-based review-summary. Our second objective is to develop a predictive model to know the next week's product sales based on numerical review ratings and textual features embedded in the reviews. When it comes to product features, every user has different priorities for different features. To capture this aspect of decision-making, we have designed a new mechanism to generate a numerical rating for every feature of the product individually. The data have been collected from a well-known commercial website for two different products. The validation of the model is carried out using a crowd-sourcing technique.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1116640 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3272-3286

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2015.1116640

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3272-3286