EconPapers    
Economics at your fingertips  
 

Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

Hong-Gang Peng and Jian-Qiang Wang

International Journal of Systems Science, 2017, vol. 48, issue 15, 3316-3333

Abstract: In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1367433 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:15:p:3316-3333

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2017.1367433

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:48:y:2017:i:15:p:3316-3333