Adaptive fuzzy ILC of nonlinear discrete-time systems with unknown dead zones and control directions
Qing-Yuan Xu and
Xiao-Dong Li
International Journal of Systems Science, 2018, vol. 49, issue 9, 1878-1894
Abstract:
This paper presents an adaptive fuzzy iterative learning control (ILC) design for non-parametrized nonlinear discrete-time systems with unknown input dead zones and control directions. In the proposed adaptive fuzzy ILC algorithm, a fuzzy logic system (FLS) is used to approximate the desired control signal, and an additional adaptive mechanism is designed to compensate for the unknown input dead zone. In dealing with the unknown control direction of the nonlinear discrete-time system, a discrete Nussbaum gain technique is exploited along the iteration axis and applied to the adaptive fuzzy ILC algorithm. As a result, it is proved that the proposed adaptive fuzzy ILC scheme can drive the ILC tracking errors beyond the initial time instants into a tunable residual set as iteration number goes to infinity, and keep all the system signals bounded in the adaptive ILC process. Finally, a simulation example is used to demonstrate the feasibility and effectiveness of the adaptive fuzzy ILC scheme.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2018.1479462 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:49:y:2018:i:9:p:1878-1894
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2018.1479462
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().