EconPapers    
Economics at your fingertips  
 

Generalized control-limit preventive repair policies for deteriorating cold and warm standby Markovian systems

Yonit Barron and Uri Yechiali

IISE Transactions, 2017, vol. 49, issue 11, 1031-1049

Abstract: Consider a deteriorating repairable Markovian system with N stochastically independent identical units. The lifetime of each unit follows a discrete phase-type distribution. There is one online unit and the others are in standby status. In addition, there is a single repair facility and the repair time of a failed unit has a geometric distribution. The system is inspected at equally spaced points in time. After each inspection, either repair or a full replacement is possible. We consider state-dependent operating costs, repair costs that are dependent on the extent of the repair, and failure penalty costs. Applying dynamic programming, we show that under reasonable conditions on the system’s law of evolution and on the state-dependent costs, a generalized control-limit policy is optimal for the expected total discounted criterion for both cold standby and warm standby systems. Illustrative numerical examples are presented and insights are provided.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1335919 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:49:y:2017:i:11:p:1031-1049

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2017.1335919

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:49:y:2017:i:11:p:1031-1049