EconPapers    
Economics at your fingertips  
 

In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes

Mojtaba Khanzadeh, Sudipta Chowdhury, Mark A. Tschopp, Haley R. Doude, Mohammad Marufuzzaman and Linkan Bian

IISE Transactions, 2019, vol. 51, issue 5, 437-455

Abstract: One major challenge of implementing Directed Energy Deposition (DED) Additive Manufacturing (AM) for production is the lack of understanding of its underlying process–structure–property relationship. Parts manufactured using the DED technologies may be too inconsistent and unreliable to meet the stringent requirements for many industrial applications. The objective of this research is to characterize the underlying thermo-physical dynamics of the DED process, captured by melt pool signals, and predict porosity during the build. Herein we propose a novel porosity prediction method based on the temperature distribution of the top surface of the melt pool as an AM part is being built. Self-Organizing Maps (SOMs) are then used to further analyze the two-dimensional melt pool image streams to identify similar and dissimilar melt pools. X-ray tomography is used to experimentally locate porosity within the Ti-6Al-4V thin-wall specimen, which is then compared with predicted porosity locations based on the melt pool analysis. Results show that the proposed method based on the temperature distribution of the melt pool is able to predict the location of porosity almost 96% of the time when the appropriate SOM model using a thermal profile is selected. Results are also compared with a previous study, that focuses only on the shape and size of the melt pool. We find that the incorporation of thermal distribution significantly improves the accuracy of porosity prediction. The significance of the proposed methodology based on the melt pool profiles is that this can lead the way toward in situ monitoring and minimize or even eliminate pores within the AM parts.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2017.1417656 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:51:y:2019:i:5:p:437-455

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2017.1417656

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:51:y:2019:i:5:p:437-455