Modfiied Conditional AIC in Linear Mixed Models
Yuki Kawakubo and
Tatsuya Kubokawa
Additional contact information
Yuki Kawakubo: Graduate School of Economics, University of Tokyo
Tatsuya Kubokawa: Faculty of Economics, University of Tokyo
No CIRJE-F-895, CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo
Abstract:
   In linear mixed models, the conditional Akaike Information Criterion (cAIC) is a procedure for variable selection in light of the prediction of specific clusters or random effects. This is useful in problems involving prediction of random effects such as small area estimation, and much attention has been received since suggested by Vaida and Blanchard (2005). A weak point of cAIC is that it is derived as an unbiased estimator of conditional Akaike information (cAI) in the overspecified case, namely in the case that candidate models include the true model. This results in larger biases in the underspecified case that the true model is not included in candidate models. In this paper, we derive the modified cAIC (McAIC) to cover both the underspecified and overspecified cases, and investigate properties of McAIC. It is numerically shown that McAIC has less biases and less prediction errors than cAIC.
Pages: 20 pages
Date: 2013-07
New Economics Papers: this item is included in nep-ecm and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.cirje.e.u-tokyo.ac.jp/research/dp/2013/2013cf895.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tky:fseres:2013cf895
Access Statistics for this paper
More papers in CIRJE F-Series from CIRJE, Faculty of Economics, University of Tokyo Contact information at EDIRC.
Bibliographic data for series maintained by CIRJE administrative office ().