Bootstrapping Quasi Likelihood Ratio Tests under Misspecification
Pascal Lavergne and
Patrice Bertail
No 20-1102, TSE Working Papers from Toulouse School of Economics (TSE)
Abstract:
We consider quasi likelihood ratio (QLR) tests for restrictions on parameters under potential model misspecification. For convex M-estimation, including quantile regression, we propose a general and simple nonparametric bootstrap procedure that yields asymptotically valid critical values. The method modifies the bootstrap objective function to mimic what happens under the null hypothesis. When testing for an univariate restriction, we show how the test statistic can be made asymptotically pivotal. Our bootstrap can then provide asymptotic refinements as illustrated for a linear regression model. A Monte-Carlo study and an empirical application illustrate that double bootstrap of the QLR test controls level well and is powerful.
Date: 2020-05
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.tse-fr.eu/sites/default/files/TSE/docu ... 2020/wp_tse_1102.pdf Full Text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tse:wpaper:124273
Access Statistics for this paper
More papers in TSE Working Papers from Toulouse School of Economics (TSE) Contact information at EDIRC.
Bibliographic data for series maintained by ().